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LETTER TO THE EDITOR 

Universal distance ratios for interacting two-dimensional 
polymers 

A L Owczarek, T Prellberg, D Bennett-Wood and A I Gumannt 
D e c e n t  of Mathematics, The University of Melbourne Parhlle, Kctoria 3052, Ausaalia 

Received 30 September 1994 

Abstract. We present the hypothesis that 5 the O-temperature of a single interacting polymer in 
WO dimensions, a particular combinalion of universal distance ampliolde &os is given exactly 
by a simple formula. in terms of critical indices only. This generalizes a similar claim for non- 
interacting self-avoiding walks, which was derived from c o n f o d  invariance considerarions. 
We support our hypothesis with a series analysis of interacting self-avoiding w& on the square 
lattice. high-precision simulations of interacting self-avoiding walks on the Manhattan lattice 5 
the exact &point and similar simulaiions of interacting vails on the squm lattice. 

A great deal of effort has been directed towards elucidating the properties of lattice models of 
the geometric features of largemolecular-weight linear polymers in solution. The canonical 
model is that of self-avoiding walks (SAW). The largelength asymptotic behaviour of SAW 
can be viewed as a critical phenomenon [I] and, hence, it is believed that there are universal 
properties of polymers that are independent of much of the microscopic detail of the system. 
For example, .the critical exponents of the SAW model on any regular lattice should hold 
exactly for. flexible linear polymers in so-called 'good' solvents. Much attention is often 
paid to the indices of the power-law behaviour that characterizes many of the quantities of 
interest. On the other hand, the renormalization group description of critical phenomena 
predicts that critical exponents, are not the only universal features: certain ratios of critical 
amplitudes (multiplicative constants of the power laws) are also universal. There has been 
some interest in these amplitude ratios for SAW [Z]. 

In two dimensions, conformal invariance, and the associated field-theoretic description 
of critical phenomena [3], provides a very powerful method of determining ,the critical 
behaviour of statistical mechanical systems. In particular, through the formal mapping 
of SAW to the n + 0 O(n) magnetic model [l], conformal invariance [4] allows one 
to. predict the critical indices for self-avoiding walks (these have also been found from 
the Coulomb gas [SI). There have also been recent calculations on amplitude ratios for 
SAW 161. Import,antly, one (linear) combination of amplitude ratios (with rational factors) 
has been calculated exactly [7,8] c using coriformal invariance. This result, found from 
Zamolodchikov's c-theorem [9], holds for non-interacting SAW and, hence, for polymers in a 
good solvent. Based on numerical work, we c1,aim that this proposition can be extended to 8- 
point polymers by suitably~modifying the oeginal prediction. Equivalently, we hypothesize 
that a particular combination of universal~distance amplitude ratios is given exactly by a 
simple formula in terms of criticalindices only. 
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We have tested this assertion first with an exact enumeration analysis for interacting SAW 
(ISAW) on the square lattice. This indicates that the quantity in question does indeed behave 
as we predict (with an error of 1 part in ZOO). In addition, we have simulational evidence for 
ISAW on the Manhattan lattice, where it proved to be correct within, at least, 1 part in 1000. 
Even for the model of interacting self-avoiding trails (ISAT) on the square lattice, where the 
presence of logarithmic corrections makes an analysis much more difficult, it proved to be 
correct to within 1 part in 100. Given the affirmative results from all three models, and 
especially the accuracy of the Manhattan data, we are confident that the Cardy-Saleur result 
is more widely applicable than previously thought 

We define any N-step path p~ on a lattice by a sequence ro, r,, . . . , T N  of vector 
positions of the vertices of that path. For the interacting problems considered, the average 
of any quantity Q over the ensemble set C ( ~ N )  of allowed paths p~ of length N is given 
generically as 

where m is the number of 'interactions' (being the number of nearest neighbours for walk 
and the number of contacts for trails). The Bolmann weight o = e#' is the usual function 
of the (inverse) temperature and the energy E associated with each interaction. We are 
interested in the average-square end-to-end distance 

(R:)N ( r N  * r N )  (2) 

the ensemble average of the mean-square distance of a monomer from the endpoints 

the average centre of mass 

~, 
and the average radius of gyration 

( R ~ ) N  = ( R , ~ ) N  - ( R , Z ) N .  (5) 

In the above formulae, we use ro 0. 
Each of these measures of the size of the polymer is expected to scale~as 

' (6) 
. ( R z ) N  - CRNZY 

where the amplitude CR is non-univeral and temperature dependent, while U is expected to 
be universal, depending only on the temperature in as much as its value is above, at, or 
below the 6-point. We define the finifelength amplitude ratios 
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-These approach 

in the limit N + 60, and these ure believed to be universal [IOl. For ISAW, the limiting 
values should depend only on dimension and whether the temperature is above, or at, the 
6'-point-above the &point they should take on their SAW values. 

For SAW, SAT and ISAW at high temperatures, and hence polymers in a' good solvent, it 
was predicted [7,8] that 

%Aw 91 - 2B" + = 0. (9) 

In the derivation [7] of this invariant, the factor multiplying A ,  (let us call it A) was given 
by 

(10) 

where yr = and yh = are the thermal and magnetic renormalization-group eigenvalues, 
respectively, of the O(0) (SAW) model. These eigenvalues are related to the conformal 
scaling dimensions via y = 2 - x .  They are also functions of the canonical exponents 
U = l /y ,  and y / u  = 2yh - 2. Rewriting the more general identity 

4 

AAw - 2 B w  + 4 = 0 (11) 

simply gives the relation . .  , .  

4Bw - 1 . .. 
= A.- 

2Aw 

In other words, a particular combination of universal distance ratios is given in terms 
of critical indices. Cast in this fashion, the relation begs the question as to its wider 
applicability. It is not clear to us from the original argument [Z, 81 that a suitably modified 
expression would not hold for ISAW at the collapse hicritical point. 

Hence, we set out to test whether or not, at the 6'-point of the interacting system, the 
quantity 

behaves as 

G N + A  , a s  N - t c a  (14) 

where again A = 2 + yt/yh, and yc and yh now take on their 0-point values. To begin 
this investigation, we first considered the canonical model of SAW interacting via nearest- 
neighbour attraction and generated series for GN(w) .  

For ISAW at the &point, the critical exponents are now believed to take on the values 
predicted by Duplantier and Saleur [Ill. These give y, = ~$ and yh = 2 and, hence, 
A s-9 = 2.875. The critical temperature has been estimated by Meirovitch and Lim [I21 
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as BE = 0.658(4) from Monte Carlo simulations. Other estimates are around this value and 
we have used log we = 0.660(5) as our standard &point. We have generated SAW up to 29 
steps, counting interactions and calwlating each of the size measures. We have formed the 
series G,(w) and from this extrapolated G,(w) for a range of values of w. As the series 
data show various irregularities (especially in the collapsed phase), we used differential 
approximants on a transformed series with coefficients H, = l T g z o G ~ ,  which has l /Gm 
as its critical point. This method is expected to give good results if the finitesize corrections 
are not stronger than 1/N. For instance, if GN - G,(1+ b / N ) ,  then HN - G L r t b )  
and the generating function behaves as H N X ~  - (1 - G,x)-(~"). We note that even 
stronger corrections can be accommodated if they are alternating in sign. The results of this 
analysis are shown in figure 1. 

2.8- 

2.7 

246191 

-- 

For repulsive and mildly attractive interactions, our estimates of G, are close to the 
predicted SAW value @), as expected. In addition, our estimates for amplitude ratios A ,  
and E ,  in the non-interacting case are 0.14030(23) and 0.439669(6), respectively, using 
the same method. These are comparable to the best available Monte Carlo data [2] for these 
ratios. As the 0-point is approached, there is a rapid change in the estimates of G,(w) 
as o is varied. At the currently accepted value 00 of the &point, the estimate of G, 
is 2.88(1). This value clearly encompasses our prediction. Furthermore, we can estimate 
the values A, = 0.180(1) and E ,  = 0.510(2). Alternatively, assuming the hypothesis' 
validity, one can estimate the @-temperature utilizing the value of A for Gm at the @-point. 
This gives us logo = 0.655(5) and compares well with the Meirovitch and Lim value. 
As a comparison, we have plotted in figure 2 our (conventional) differential approximant 
aklysis of the exponent U, estimated from the radius of gyration series. Now, using the 
believed value of U = $ to estimate the critic4 temperature, gives logw = 0.665(5). There 
are some corrections-to-scaling obviously to be taken into account, but this shows that, up 
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to the accuracy of the present analysis, that determinations of the critical temperature from 
GN and exponent estimates, such as W N ,  are comparable. The low-temperature behaviour 
is difficult to ascertain, with very low temperatures unreliablc because of corrections-to- 
scaling, and temperatures close to the 0-point similarly unreliable because of crossover 
effects. 

0.8-  

0.7- 
I J M I  . .- 

> o  

0 

n 

0.570 

0.560 

0.64 0.66 0.68 I II. . I -1 

I I I I I _. . 
0 1 2 3 

logm I 

-1 

Figure 2. This shows estimates of the exponent U obtained from a differential approximt 
analysis of the d e s  for (R; )N .  This is given as a comparison for figure I. Note that the high- 
and %-temperature values are accurately given. while at low temperiN& the presence of strong 
correcrions-to-scaling induces asystematic mor in the analysis. The inset shows a magnified 
region amund the 8-point. I 

Bradley [I31 showed that kinetic growth loops on the Manhattan lattice could be mapped 
exactly onto the &point of closed ISAW on that lattice. Recently, kinetic growth simulations 
of SAW on the Manhattan lattice [ 141 have proven relatively successful in calculating the 
critical properties of Manhattan ISAW. In fact, there is an exactly solvable vertex model 
equivalent to this problem [14,15]. The critical nature of the 0-point on the Manhattan 
lattice is similar to, but not exactly the same as, that of regular lattices 114,151. Regardless, 
it seemed natural to test our hypothesis on Manhattan ISAW at the 0-point. The simulations 
were carried out on the isomorphic problem of trails on the L-lattice, for trails up to length 
N = 65536. For this problem, yt = $ and yh = z, so A = 3. We have estimates 
of AN and BN for N = Zk, k = 7, .  . . , 16. These are plotted in figure 3 against I f N .  
The corrections-to-scaling are unknown but these plots are reasonably consistent, with the 
dominant corrections being of the 1/N type. Being therefore conservatwe with our estimated 
errors, gives A, 0.15740(5) and B ,  = 0.4861(1) and, hence, G, = 3.0000(16). This 
then is a precise verification of the proposition at hand. 

Interacting trails on the square lattice at the collapse temperature have also been found 
to be equivalent to kinetic growth trails on that lattice [16]. However, this problem is 
numerically complicated by the presence of multiplicative logarithmic corrections. Here it is 
believed 1161 that yt = 2 and yh = 2, making h = 3. Our simulations and analysis paralleled 
that of the L-lattice case. Estimates of A N  and BN for N = 2k, k = 7, . . . ,16 were taken. 

7 
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Figure 3. The top two gnphs show the simulational data for AN and BN for interacting L-lattice 
mils (equivalent to Manhatun lattice ISAW) and the b n o m  two graphs show lhe simulational data 
for AN and BN for interacting s q m  lattice trails. The L-lattice values are plotted against l/N, 
while the square lattice data is plotted against l/(log N) in accordance with known evidence of 
the corrections-to-scaling in the two cases. 

These are plotted in figure 3 against 1 f log N. There are clear strong corrections-to-scaling 
left in the estimates. However, a simple minded extrapolation using the logarithmic scale 
gives A ,  = 0.1620(5) and Bm = 0.493(1) and, hence,,G, = 3.000(16). Once again, our 
estimate is in  excellent agreement with the supposition G, = A. 

We have concentrated on the &point since it is generally believed to be a critical point. 
However, it may also be the case that G, takes on a simple constant value in the collapsed 
phase. If so, that value would be near 3.0 according to our extrapolations, which is consistent 
with the pseudo-critical exponents v = 4 and 7 = 0. However, our data is not accurate 
enough to verify or refute this additional prediction. 

In conclusion, we have series and simulational evidence that a suitably modified 
Cardy-Saleur-Caracciolc-PeIissettc-Sokd invaraint should exist for 0-point polymers. Our 
numerical findings are summarized in table 1. It would, of course, be desirable if this 
invariant could be derived from conformal invariance arguments, as was the original 
prediction. 

Table 1. Best estimates of the distance mios for the collapse tramition of interacting walk 
models. The estimates of G, are to be compared with the values of A computed from the 
conjectured exact scding dimensions. 

&point models log- A, Be3 G, Yc hh A 

ISAW 0.660(5) 0.180(1) O.SlO(2) 2.88(1) 2 2.815 
Manhaltan ISAW I0g-h 0.157406) 0.486l(l) 3.0000(16) : i 3  
lSA1 log3 0.1620(5) 0.493(1) 3.0W(l6) 2 2 1 
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